Exercise 304

Iodine-131 is a radioactive substance that decays according to the function $Q(t)=Q_{0} \cdot e^{-0.08664 t}$, where Q_{0} is the initial quantity of a sample of the substance and t is in days. Determine how long it takes (to the nearest day) for 95% of a quantity to decay.

Solution

If 95% of a quantity decays, then only 5% of it is left.

$$
\begin{gathered}
Q(t)=Q_{0} \cdot e^{-0.08664 t} \\
0.05 Q_{0}=Q_{0} \cdot e^{-0.08664 t}
\end{gathered}
$$

Divide both sides by Q_{0}.

$$
0.05=e^{-0.08664 t}
$$

Take the natural logarithm of both sides.

$$
\ln 0.05=\ln e^{-0.08664 t}
$$

Use the property of logarithms that allows the exponent of the argument to be brought down in front.

$$
\ln 0.05=(-0.08664 t) \ln e
$$

Use the fact that $\ln e=1$.

$$
\ln 0.05=-0.08664 t
$$

Solve for t by dividing both sides by -0.08664 .

$$
t=-\frac{\ln 0.05}{0.08664} \approx 34.6
$$

Therefore, it takes about 35 days for 95% of a sample of Iodine- 131 to decay.

